Abstract

submitted to the 41st Annual Conference on Bioassay, Analytical, and Environmental Radiochemistry, Boston, 11/13 - 17/1995

Simultaneous Determination of ²³⁷Np, ²³²Th and ^{234, 235,238}U in Urine Samples using Extraction Chromatography, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Gamma Spectroscopy

Son N. Nguyen, Philip E. Miller, John F. Wild, David P. Hickman and Gary WM. Mansfield, Lawrence Livermore National Laboratory, P.O. Box 808, L-379, Livermore, CA 94551.

We have succeeded determining ²³⁷Np, ²³²Th and ^{234, 235,238}U (natural U isotopes) simultaneously in urine samples using extraction chromatographic sample preparation coupled with gamma spectroscopy and ICP-MS detection. After being spiked with ²³⁹Np, ²³⁰Th, and ²³³U tracers, urine samples were wet-ashed with HNO₃ and loaded onto an extraction chromatographic column. Following elution, samples were spiked with a known quantity of ²⁴²Pu and brought to a constant volume. The quantity of ²³²Th and U in the sample was determined using the isotope dilution technique. Similarly, the U isotopic composition of the sample was determined by isotopic measurements of ²³⁴U/²³⁸U and ²³⁵U/²³⁸U isotope pairs. The quantity of ²³⁷Np in the sample was determined using a set of external standards combined with the recovery yield for Np obtained by the gamma counting of the short-lived ²³⁹Np.

Direct comparison of the recovery yield of the Np in a set of spiked urine samples as determined by gamma counting of 239 Np and ICP-MS detection of 237 Np are consistently in good agreement with one another ($\pm 3\%$). Np is recovered with good yield (85-95%). U and Th are typically recovered, from the column clean up procedure, with efficiencies of 75 - 85%. The MDA of the ICP-MS for 237 Np, 232 Th, 234 U, 235 U, 238 U in 50 mL urine samples are 8 x $^{10^{-3}}$ dpm, 1 x $^{10^{-6}}$ dpm, 7 x $^{10^{-2}}$ dpm, 2 x $^{10^{-5}}$ dpm, and 4 x $^{10^{-6}}$ dpm, respectively. Experimentail details are reported.